208 research outputs found

    Rearing juvenile Australian native percichthyid fish in fertilised earthen ponds

    Full text link
    The post-larvae and fry of Australian native species, including those of species belonging to the family Percichthyidae, are routinely reared to a fingerling size (35-55 mm in length) in fertilised earthen fry rearing ponds. The juveniles of Murray cod (Maccullochella peelii peelii\ trout cod (Maccullochella macquariensis) and Macquarie perch (Macquaria australasicd) (Percichthyidae) are grown in fry rearing ponds at the Marine and Freshwater Resources Institute, Snobs Creek (Vie. Australia) for production of fingerlings for stock enhancement and aquaculture purposes. However, no detailed studies have been undertaken of the productivity of these ponds and factors that influence fish production. An ecologically based study was undertaken to increase the knowledge of pond ecology and dynamics, particularly in relation to the rearing of juvenile Murray cod, trout cod and Macquarie perch in ponds. Over nine consecutive seasons commencing in 1991, water chemistry, plankton, macrobenthos (2 seasons only) and fish were monitored and studied in five ponds located at Snobs Creek. A total of 80 pond fillings were undertaken during the study period. Additional data collected from another 24 pond fillings undertaken at Snobs Creek collected prior to this study were included in some analyses. Water chemistry parameters monitored in the ponds included, temperature, dissolved oxygen pH, ammonia, nitrite, nitrate, orthophosphate and alkalinity. Water chemistry varied spatially (within and between ponds) and temporally (diurnally, daily and seasonally). Liming of ponds increased the total alkalinity to levels that were considered to be suitable for enhancing plankton communities and fish production. Water quality within the ponds for the most part was suitable for the rearing of juvenile Murray cod, trout cod and Macquarie perch, as reflected in overall production (growth, survival and yield) from the ponds. However, at times some parameters reached levels which may have stressed fish and reduced growth and survival, in particular, low dissolved oxygen concentrations (minimum 1.18 mg/L), high temperatures (maximum 34°C), high pH (maximum 10.38) and high unionised ammonia (maximum 0.58 mg/L). Species belonging to 37 phytoplankton, 45 zooplankton and 17 chironomid taxa were identified from the ponds during the study. In addition, an extensive checklist of aquatic flora and fauna, recorded from aquaculture ponds in south-eastern Australia, was compiled. However, plankton and benthos samples were usually numerically dominated by a few species only. Rotifers (especially Filinia, Brachionus, Polyarthra, and Asplanchnd), cladocerans (Moina and Daphnid) and copepods (Mesocyclops and Boeckelld) were most abundant and common in the plankton, while chironomids (Chironomus, Polypedilum, and Prodadius) and oligochaetes were most common and abundant in the benthos. Both abundance and species composition of the plankton and macrobenthos varied spatially (within and between ponds) and temporally (diurnally, daily and seasonally). Chlorophyll a concentrations, which ranged from 1.8 to 184 \ig/L (mean 29.37 ng/L), initially peaked within two weeks of filling and fertilising the ponds. Zooplankton peaked in abundance 2-4 weeks after filling the ponds. The maximum zooplankton density recorded in the ponds was 6,621 ind./L (mean 721 ind./L). Typically, amongst the zooplankton, rotifers were first to develop high densities (2nd-3rd week after filling), followed by cladocerans (2nd-4th week after filling) then copepods (2nd-5th week after filling). Chironomid abundance on average peaked later (during the 5th week after filling). The maximum chironomid density recorded in the ponds was 27,470 ind./m2 (mean 4,379 ind./m2). Length-weight, age-weight and age-length relationships were determined for juvenile Murray cod, trout cod and Macquarie perch reared in ponds. These relationships were most similar for Murray cod and trout cod, which are more closely related phylogenetically and similar morphologically than Macquarie perch. Growth of fish was negatively correlated with both size at stocking and stocking biomass. Stocking density experiments showed that, at higher densities, growth offish was significantly reduced, but survival was not affected. The diets of juvenile Murray cod trout cod and Macquarie perch reared in fry ponds were similar. The cladocerans Moina and Daphnia, adult calanoid and cyclopoid copepods and the chironomids, Chironomus, Polypedilum and Procladius were the most commonly occurring and abundant prey. Selection for rotifers and copepod nauplii was strongly negative for all three species of fish. Size range of prey consumed was positively correlated with fish size for trout cod and Macquarie perch, but not for Murray cod. Diet composition changed as the fish grew. Early after stocking the fish into the ponds, Moina was generally the more common prey consumed, while in latter weeks, copepods and chironomids became more abundant and common in the diet. On a dry weight basis, chironomid larvae were the most important component in the diets of these fish species. Selective feeding by fish on larger planktonic species such as adult copepods and cladocerans, may have influenced the plankton community structure as proposed by the trophic cascade or top -down hypothesis. The proximate composition and energy content of Murray cod, trout cod and Macquarie perch, reared in the ponds did not vary significantly between the species, and few significant changes were observed as the fish grew. These results suggested that the nutrient requirements of these species might not vary over the size range of fish examined. Significant differences in the proximate composition of prey were observed between species, size of species and time of season. The energy content of prey (cladocerans, copepods and chironomids) on a pond basis, was closely related to the abundance of these taxa in the ponds. Data collected from all pond fillings during the present study, along with historical data from pond fillings undertaken prior to this study, were combined in a data matrix and analysed for interactions between pairs of parameters. In particular, interactions between selected water chemistry parameters, zooplankton and chironomid abundance indicators were analysed to identify key factors that influence fish production (growth, survival, condition and yield). Significant correlations were detected between fish production indicators and several water chemistry and biota (zooplankton and chironomids) parameters. However, these were not consistent across all three species of fish. These results indicated that the interactions between water chemistry, biota and fish were complex, and that combinations of these parameters, along with other factors not included in the present study, may influence fish production in these ponds. The present study, showed that more stringent monitoring of fry rearing ponds, especially water quality, zooplankton and benthos communities and fish, combined with an associated increase in understanding of the pond ecosystem, can lead to substantial improvements in pond productivity and associated fish production. In the present study this has resulted in a general increase in fish survival rates, which became less variable or more predictable in nature. The value of such knowledge can provide managers with a more predicative capacity to estimate production of ponds in support of stock enhancement programs and provision of juvenile for aquaculture grow-out

    Progress on selective breeding program for blue mussel in Victoria

    Full text link

    Perspectives on culture-based fisheries development in Asia

    Full text link

    Mimesis stories: composing new nature music for the shakuhachi

    Get PDF
    Nature is a widespread theme in much new music for the shakuhachi (Japanese bamboo flute). This article explores the significance of such music within the contemporary shakuhachi scene, as the instrument travels internationally and so becomes rooted in landscapes outside Japan, taking on the voices of new creatures and natural phenomena. The article tells the stories of five compositions and one arrangement by non-Japanese composers, first to credit composers’ varied and personal responses to this common concern and, second, to discern broad, culturally syncretic traditions of nature mimesis and other, more abstract, ideas about the naturalness of sounds and creative processes (which I call musical naturalism). Setting these personal stories and longer histories side by side reveals that composition creates composers (as much as the other way around). Thus it hints at much broader terrain: the refashioning of human nature at the confluence between cosmopolitan cultural circulations and contemporary encounters with the more-than-human world

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
    • …
    corecore